研究業績 | Ken Morita research group at Chiba University

Ken Morita research group at Chiba University

研究業績

査読付き研究論文

2022年3月現在77編

  1. Ayuki Arikawa, Yasuhito Saito, Koichi Nakanishi, Shota Sato, Kyohei Sugaya, Nobuhide Yokota, Makoto Kohda, and Ken Morita, “D'yakonov–Perel and Elliot–Yafet spin relaxation rates in InGaAs/InAlAs multiple quantum wells at room temperature”, Applied Physics Express 15, 043001 (2022).
  2. Koichi Nakanishi, Ayuki Arikawa, Yasuhito Saito, Daisuke Iizasa, Satoshi Iba, Yuzo Ohno, Nobuhide Yokota, Makoto Kohda, Yoshihiro Ishitani, and Ken Morita, “Room-temperature spin-orbit magnetic fields in slightly misoriented (110) InGaAs/InAlAs multiple quantum wells”, Applied Physics Letters 119, 032405 (2021).
  3. Bei Ma, Mingchuan Tang, Kohei Ueno, Atsushi Kobayashi, Ken Morita, Hiroshi Fujioka, and Yoshihiro Ishitani, “Combined infrared reflectance and Raman spectroscopy analysis of Si-doping limit of GaN”, Applied Physics Letters 117, 192103 (2020).
  4. Hiroki Shida, Kohei Kawaguchi, Yasuhito Saito, Ichirota Takazawa, Toshiki Fukasawa, Daisuke Iizasa, Takahito Saito, Takahiro Kitada, Yoshihiro Ishitani, Makoto Kohda, and Ken Morita, “Spin-orbit parameters derivation using single-frequency analysis of InGaAs multiple quantum wells in transient spin dynamics regime”, Journal of Applied Physics 127, 153901 (2020).
  5. Shungo Okamoto, Naomichi Saito, Kotaro Ito, Bei Ma, Ken Morita, Daisuke Iida, Kazuhiro Ohkawa, and Yoshihiro Ishitani, “Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers”, Applied Physics Letters 116, 142107 (2020).
  6. K. Kawaguchi, T. Fukasawa, I. Takazawa, H. Shida, Y. Saito, D. Iizasa, T. Saito, T. Kitada, Y. Ishitani, M. Kohda, and K. Morita, “Transient diffusive spin dynamics in intrinsic InGaAs/InAlAs multiple quantum wells”, Applied Physics Letters 115, 172406 (2019).
  7. K. Morita, A. Okumura, H. Takaiwa, I. Takazawa, T. Oda, T. Kitada, M. Kohda, and Y. Ishitani, “Temperature and laser energy dependence of the electron g-factor in intrinsic InGaAs/InAlAs multiple quantum wells”, Applied Physics Letters 115, 012404 (2019).
  8. 北田 貴弘, 盧 翔孟, 南 康夫, 熊谷 直人, 森田 健, “高指数面上の副格子交換エピタキシーと面型非線形光デバイス”, 材料 68, 739-744 (2019).
  9. 北田 貴弘, 南 康夫, 盧 翔孟, 熊谷 直人, 森田 健, “半導体結合共振器による面発光テラヘルツ素子” 光学 48, 274-280 (2019).
  10. Y. Minami, K. Ogusu, X. Lu, N. Kumagai, K. Morita, and T. Kitada, “Time-Resolved measurements of Two-Color Laser Lights Emitted from a GaAs/AlGaAs Coupled Multilayer Cavity”, Japanese Journal of Applied Physics 58, SJJ03 (2019).
  11. Ken Morita, “Theorems on Two Tetrahedrons Intersecting a Sphere”, Journal for Geometry and Graphics 22, No. 2, 219-227 (2018).
  12. D Iizasa, D. Sato, K. Morita, J. Nitta, and M. Kohda, “Robustness of a persistent spin helix against a cubic Dresselhaus field in (001) and (110) oriented two-dimensional electron gases”, Physical Review B 98, 165112 (2018).
  13. Y. Ishitani, T. Aoki, H. Funabashi, and K. Morita, “Selective thermal radiation at longitudinal optical phonon energy under geometric condition of metal-semiconductor mesa stripe structures”, Applied Physics Letters 113, 192105 (2018).
  14. K. Morita, K. Shiozawa, K. Suizu, and Y. Ishitani, “Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system”, Japanese Journal of Applied Physics Rapid Communication 57, 050304 (2018).
  15. T. Kitada, X. Lu, Y. Minami, N. Kumagai, and K. Morita, “Room-temperature two-color lasing by current injection into a GaAs/AlGaAs coupled multilayer cavity fabricated by wafer bonding”, Japanese Journal of Applied Physics 57, 04FH03 (2018).
  16. H. Sakamoto, E. Takeuchi, K. Yoshida, K. Morita, B. Ma, and Y. Ishitani, “Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures”, Journal of Physics D: Applied Physics 51, 015105 (2018).
  17. H. Sakamoto, B. Ma, K. Morita, and Y. Ishitani, “Raman study of the quantum interference of multiple discrete states and a continuum of states in the phonon energy region of semiconductors: example of p-type Ga0.5In0.5P films”, Journal of Physics D: Applied Physics 49, 375107 (2016).
  18. T. Iwahori, B. Ma, K. Morita, and Y. Ishitani, “Theoretical investigation of non-thermal equilibrium exciton dynamics in GaN based on hydrogen plasma model”, Japanese Journal of Applied Physics 55, 05FM06 (2016).
  19. T. Kamijoh, B. Ma, K. Morita, and Y. Ishitani, “Depth profile characterization technique of electron density in GaN films by infrared reflection spectra”, Japanese Journal of Applied Physics 55, 05FH02 (2016).
  20. Y. Ishitani, K. Takeuchi, N. Oizumi, H. Sakamoto, B. Ma, K. Morita, H. Miyake, and K. Hiramatsu, “Excitation and deexcitation dynamics of excitons in a GaN film based on the analysis of radiation from high-order states”, Journal of Physics D: Applied Physics 49, 245102 (2016).
  21. Y. Ishitani, K. Hatta, K. Morita, and B. Ma, “Dielectric absorption of s-polarized infrared light resonant to longitudinal optical phonon energy incident on lateral (0001) GaN/Ti stripe structures”, Journal of Physics D: Applied Physics 48, 095103 (2015).
  22. R. Kurosawa, K. Morita, M. Kohda, and Y. Ishitani, “Effect of cubic Dresselhaus spin-orbit interaction in persistent spin helix sate including phonon scattering in a semiconductor quantum wells”, Applied Physics Letters 107, 182103 (2015).
  23. M. Ogarane, S. Katoh, Y. Nakagawa, K. Morita, T. Kitada, and T. Isu, “Terahertz emission from a coupled multilayer cavity with InAs quantum dots”, Journal of Crystal Growth 425, 303 (2015).
  24. M. Ogarane, Y. Yasunaga, Y. Nakagawa, K. Morita, T. Kitada, and T. Isu, “Four-wave mixing in GaAs/AlAs triple-coupled cavity with InAs quantum dots”, Japanese Journal of Applied Physics 54, 04DG05 (2015).
  25. C. Harayama, S. Katoh, Y. Nakagawa, K. Morita, T. Kitada, and T. Isu, “Wafer-bonded coupled multilayer cavity with InAs quantum dots for two-color emission”, Japanese Journal of Applied Physics 53, 04EG11 (2014).
  26. T. Kitada, Y. Yasunaga, Y. Nakagawa, K. Morita, and T. Isu, “Four-wave mixing in a GaAs/AlAs triple-coupled multilayer cavity for novel ultrafast wavelength conversion devices”, Japanese Journal of Applied Physics 53, 04EG03 (2014).
  27. T. Kitada, C. Harayama, K. Morita, and T. Isu, “Two-color lasing in a coupled multilayer cavity with InAs quantum dots by optical pumping”, Physica Status Solidi C 10, 1434 (2013).
  28. T. Kitada, Y. Yasunaga, Y. Nakagawa, K. Morita, and T. Isu, “Wavelength conversion via four-wave mixing in a triple-coupled multilayer cavity”, Applied Physics Letters 103, 101109 (2013).
  29. T. Kitada, H. Ueyama, K. Morita, and T. Isu, “Ultrafast photocarrier relaxation processes in Er-doped InAs quantum dots embedded in strain-relaxed InGaAs barriers”, Journal of Crystal Growth 378, 485 (2013).
  30. T. Kitada, S. Katoh, T. Takimoto, Y. Nakagawa, K. Morita, and T. Isu, “Terahertz emission from a GaAs/AlAs coupled multilayer cavity with nonlinear optical susceptibility inversion”, Applied Physics Letters 102, 251118 (2013).
  31. T. Kitada, S. Katoh, T. Takimoto, Y. Nakagawa, K. Morita, and T. Isu, “Terahertz Waveforms Generated by Second-Order Nonlinear Polarization in GaAs/AlAs Coupled Multilayer Cavities Using Ultrashort Laser Pulses”, IEEE Photonics Journal 5, 6500308 (2013).
  32. Y. Yasunaga, H. Ueyama, K. Morita, T. Kitada, and T. Isu, “Strongly Enhanced Four-Wave Mixing Signal from GaAs/AlAs Cavity with InAs Quanynm Dots Embedded in Strain-Relaxed Barriers”, Japanese Journal of Applied Physics 52, 04CG09 (2013).
  33. H. Komatsu, Z. Zhang, Y. Nakagawa, K. Morita, T. Kitada, and T. Isu, “A GaAs/Air Multilayer Cavity for a Planar-Type Nonlinear Optical Device”, Japanese Journal of Applied Physics 52, 04CG06 (2013).
  34. K. Morita, H. Ueyama, Y. Yasunaga, Y. Nakagawa, T. Kitada, and T. Isu, “GaAs/AlAs Multilayer Cavity with Er-Doped InAs Quantum Dots Embedded in Thin Strain-Relaxed In0.45Ga0.55As Barriers for Ultrafast All-Optical Switches ”, Japanese Journal of Applied Physics 52, 04CG04 (2013).
  35. S. Katoh, T. Takimoto, Y. Nakagawa, K. Morita, T. Kitada, and T. Isu, “Terahertz Radiation from a (113)B GaAs/AlAs Coupled Multilayer Cavity by Ultrashort Laser Pulse Excitation”, Japanese Journal of Applied Physics 51, 04DG05 (2012).
  36. H. Ueyama, T. Takahashi, Y. Nakagawa, K. Morita, T. Kitada, and T. Isu, “GaAs/AlAs Multilayer Cavity with Er-Doped InAs Quantum Dots Embedded in Strain-Relaxed InGaAs Barriers for Ultrafast All-Optical Switches”, Japanese Journal of Applied Physics 51, 04DG06 (2012).
  37. K. Morita, “Some Theorems on Kissing Circles and Spheres,” Journal for Geometry and Graphics 15, No.2, 159-168 (2011).
  38. K. Morita, S. Katoh, T. Takimoto, F. Tanaka, Y. Nakagawa, S. Saito, T. Kitada, and T. Isu, “Generation of Terahertz Radiation from Two Cavity Modes of a GaAs/AlAs Coupled Multilayer Cavity”, Applied Physics Express 4, 102102 (2011).
  39. K. Morita, T. Takahashi, T. Kitada, and T. Isu, “Optical Kerr Signals Markedly Enhanced by Increasing Quality Factor in a GaAs/AlAs Multilayer Cavity”, Japanese Journal of Applied Physics 50, 04DG02 (2011).
  40. T. Tomita, R. Kumai, H. Nomura, S. Matsuo, S. Hashimoto, K. Morita, and T. Isu, “Surface Roughness Assisted 100 kHz Femtosecond Laser Induced Nanostructure Formation on Silicon Surface”, Applied Physics A 105, 89 (2011).
  41. T. Kitada, T. Takahashi, H. Ueyama, K. Morita, and T. Isu, “Marked reduction in Photocarrier Lifetime by Erbium Doping into Self-Assembled InAs Quantum Dots Embedded in Strain-Relaxed InGaAs Barriers”, Journal of Crystal Growth 323, 241 (2011).
  42. F. Tanaka, T. Takimoto, K. Morita, T. Kitada, and T. Isu, “Time-Resolved Measurements on Sum-Frequency Generation Strongly Enhanced in (113)B GaAs/AlAs Coupled Multilayer Cavity”, Japanese Journal of Applied Physics 50, 04DG03 (2011).
  43. K. Morita, F. Tanaka, T. Takahashi, T. Kitada, and T. Isu, “Optical Anisotropy of Sum Frequency Generation Strongly Enhanced in (113)B GaAs/AlAs Coupled Multilayer Cavity”, Applied Physics Express 3, 072801 (2010).
  44. K. Morita, T. Takahashi, T. Kanbara, S. Yano, T. Mukai, T. Kitada, and T. Isu, “Large Optical Kerr Signal of GaAs/AlAs Multilayer Cavity with InAs Quantum Dots Embedded in Strain-Relaxed Barriers”, Physica E 42, 2505 (2010).
  45. K. Morita, N. Niki, T. Kitada, and T. Isu, “Optical anisotropy of two-photon absorption in GaAs/AlGaAs quantum wells measured by photoluminescence”, Physica Status Solidi C 7, 2482 (2010).
  46. T. Isu, T. Kanbara, T. Takahashi, K. Morita, and T. Kitada, “Optical Kerr signals of GaAs/AlAs multilayer cavities with two-photon resonant quantum wells in the half-wavelength layer”, Physica Status Solidi C 7, 2478 (2010).
  47. T. Kitada, A. Mukaijo, T. Takahashi, T. Mukai, K. Morita, and T. Isu, “Excitation wavelength dependence of photocarrier relaxation in Si-doped InAs quantum dots with strain-relaxed InGaAs barriers”, Physica Status Solidi C 8, 334 (2011).
  48. T. Kitada, A. Mukaijo, T. Takahashi, T. Mukai, K. Morita, and T. Isu, “Doping effect on photocarrier lifetime in InAs quantum dots with strain-relaxed InGaAs barriers grown by molecular beam epitaxy”, Physica E 42, 2540 (2010).
  49. F. Tanaka, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Strong Sum Frequency Generation in a GaAs/AlAs Coupled Multilayer Cavity Grown on a (113)B-Oriented GaAs Substrate”, Japanese Journal of Applied Physics 49, 04DG01 (2010).
  50. T. Takahashi, T. Mukai, K. Morita, T. Kitada, and T. Isu, “GaAs/AlAs Multilayer Cavity with InAs Quantum Dots Embedded in Strain-Relaxed Barriers for Planar-Type Optical Kerr Gate Switches”, Japanese Journal of Applied Physics 49, 04DG02 (2010).
  51. K. Morita, T. Takahashi, T. Kitada, and T. Isu, “Enhanced Optical Kerr Signal of GaAs/AlAs Multilayer Cavity with InAs Quantum Dots Embedded in Strain-Relaxed Barriers”, Applied Physics Express 2, 082001 (2009).
  52. T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, “GaAs/AlAs coupled multilayer cavity structures for terahertz emission devices”, Applied Physics Letters 95, 111106 (2009).
  53. T. Kitada, T. Kanbara, S. Yano, K. Morita, and T. Isu, “Marked Enhancement of Optical Kerr Signal in Proportion to Fourth Power of Quality Factor of a GaAs/AlAs Multilayer Cavity”, Japanese Journal of Applied Physics 48, 080203 (2009).
  54. K. Morita, H. Sanada, S. Matsuzaka, Y. Ohno, and H. Ohno, “Intersuband Exchange Interaction Induced by Optically Excited Electron Spins in GaAs/AlGaAs Quantum Wells”, Applied Physics Letters 94, 162104 (2009).
  55. K. Morita, T. Kanbara, S. Yano, T. Kitada, and T. Isu, “Optical Kerr Signals of GaAs/AlAs Multilayer Cavities for a Short Pulse”, Physica Status Solidi C 6, 1420 (2009).
  56. K. Morita, T. Kanbara, S. Yano, T. Kitada, and T. Isu, “Asymmetric Temporal Profile of Optical Kerr Signal from GaAs/AlAs Multilayer with λ/2 Phase Shift layer”, Physica Status Solidi C 6, 137 (2009).
  57. T. Kanbara, S. Nakano, S. Yano, K. Morita, T. Kitada, and T. Isu, “Enhanced Two-photon Absorption in a GaAs/AlAs Multilayer Cavity”, Japanese Journal of Applied Physics 48, 04C105 (2009).
  58. T. Takahashi, T. Mukai, K. Morita, T. Kitada, and T. Isu, “Photoluminescence Properties of Self-Assembled InAs Quantum Dots Grown on (001) and (113)B GaAs Substrates by Molecular Beam Epitaxy under a Slow Growth Rate Condition,” Japanese Journal of Applied Physics 48, 04C128 (2009).
  59. T. Mukai, T. Takahashi, K. Morita, T. Kitada, and T. Isu, “Excitation Wavelength Dependence of Carrier Relaxation in Self-Assembled InAs Quantum Dots Embedded in Strain-Relaxed In0.35Ga0.65As Barrier Layers”, Japanese Journal of Applied Physics 48, 04C106 (2009).
  60. T. Kitada, T. Mukai, T. Takahashi, K. Morita, and T. Isu, “Fast Carrier Relaxation of Self-Assembled InAs Quantum Dots Embedded in Strain-relaxed In0.35Ga0.65As Barriers for Ultrafast Nonlinear Optical Switching Applications” Journal of Crystal Growth 311, 1807 (2009).
  61. Y. Kondo, M. Ono, S. Matsuzaka, K. Morita, H. Sanada, Y. Ohno, and H. Ohno, “Multipulse Operation and Optical Detection of Nuclear Spin Coherence in a GaAs/AlGaAs Quantum Well”, Physical Review Letters 101, 207601 (2008).
  62. T. Kitada, N. Niki, K. Morita, and T. Isu, “Optical Anisotropy of (11n)-Oriented InGaAs strained Quantum Wells with Finate Barrier Potential Calculated with Mixing Effects of the Spin-Orbit Split-Off Band”, Japanese Journal of Applied Physics 47, 7839 (2008).
  63. T. Kitada, T. Kanbara, K. Morita, and T. Isu, “A GaAs/AlAs Multilayer Cavity with Self-Assembled InAs Quantum Dots Embedded in Strain-Relaxed Barriers for Ultrafast All-Optical Switching Applications”, Applied Physics Express 1, 092302 (2008).
  64. N. Niki, K. Morita, T. Kitada, and T. Isu, “Optical Anisotropy of Strained Quantum Wells on High Index Substrates”, Physica Status Solidi C 5, 2756 (2008).
  65. T. Kitada, S. Kusunoki, M. Kinouchi, K. Morita, T. Isu, and S. Shimomura, “Isotropic Interface Roughness of Pseudomorphic In0.74Ga0.26As/In0.52Al0.48As Quantum Wells Grown on (411)A InP Substrates by Molecular Beam Epitaxy”, Physica Status Solidi C 5, 2753 (2008).
  66. H. Sanada, Y. Kondo, S. Matsuzaka, K. Morita, C. Y. Hu, Y. Ohno, and H. Ohno, “Optical Pump-Probe Measurements of Local Nuclear Spin Coherence in Semiconductor Quantum Wells”, Physical Review Letters 96, 067602 (2006).
  67. K. Morita, H. Sanada, S. Matsuzaka, C. Y. Hu, Y. Ohno, and H. Ohno, “Strong anisotropic spin dynamics in narrow n-InGaAs/AlGaAs (110) quantum wells”, Applied Physics Letters 87, 171905 (2005).
  68. C. Y. Hu, K. Morita, H. Sanada, S. Matsuzaka, Y. Ohno, and H. Ohno, “Spin Precession of Holes in Wurtzite GaN Studied using the time-resolved Kerr rotation technique”, Physical Review B 72, 121203(R) (2005).
  69. H. Sanada, S. Matsuzaka, K. Morita, C. Y. Hu, Y. Ohno, and H. Ohno, “Gate Control of Dynamic Nuclear Polarization in GaAs Quantum Wells”, Physical Review Letters 94, 097601 (2005).
  70. K. Morita, H. Sanada, S. Matsuzaka, C. Y. Hu, Y. Ohno, and H. Ohno, “Electron Spin Dynamics in InGaAs Quantum Wells”, Physica E 21, 1007 (2004).
  71. H. Sanada, S. Matsuzaka, K. Morita, C. Y. Hu, Y. Ohno, and H. Ohno, “Hysteretic dynamic nuclear polarization in GaAs/AlxGa1-xAs (110) quantum wells”, Physical Review B 68, 241303(R) (2003).
  72. A. V. Kolobov, K. Morita, K. M. Itoh, and E. E. Haller, “A Raman Scattering Study of Self-Assembled Pure Isotope Ge/Si(100) Quantum Dots”, Applied Physics Letters 81, 3855 (2002).
  73. K. Morita, K. M. Itoh, M. Nakajima, H. Harima, K. Mizoguchi, Y. Shiraki, and E. E. Haller, “Raman spectra of 70Ge/76Ge isotope heterostructures with argon 488 and 514.5 nm excitations”, Physica B 316-317, 561 (2002).
  74. K. Morita, K. M. Itoh, L. Hoffmann, B. B. Nielsen, H. Harima, and K. Mizoguchi, “Raman Investigation of the Localized Vibrational Mode of Carbon in Strain-Relaxed Si1-xGex:C”, Japanese Journal of Applied Physics 40, 5905 (2001).
  75. M. Nakajima, H. Harima, K. Morita, K. M. Itoh, K. Mizoguchi, and E. E. Haller, “Coherent confined LO phonons in 70Ge/74Ge isotope superlattices generated by ultrafast laser pulses”, Physical Review B 63, 161304(R) (2001).
  76. K. Morita, K. M. Itoh, J. Muto, K. Mizoguchi, N. Usami, Y. Shiraki, and E. E. Haller, “Growth and characterization of 70Gen/74Gen isotope superlattices”, Thin Solid Films 369, 405 (2000).
  77. M. Nakajima, K. Mizoguchi, K. Morita, K. Itoh, H. Harima, and S. Nakashima, “Comparison of Coherent and Incoherent LO Phonons in Isotopic 70Ge/74Ge Superlattices”, Journal of Luminescence 87-89, 942 (2000).